3.173 \(\int \frac{(A+C \cos ^2(c+d x)) \sec (c+d x)}{(b \cos (c+d x))^{4/3}} \, dx\)

Optimal. Leaf size=90 \[ \frac{3 A \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}-\frac{3 (A+4 C) \sin (c+d x) (b \cos (c+d x))^{2/3} \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};\cos ^2(c+d x)\right )}{8 b^2 d \sqrt{\sin ^2(c+d x)}} \]

[Out]

(3*A*Sin[c + d*x])/(4*d*(b*Cos[c + d*x])^(4/3)) - (3*(A + 4*C)*(b*Cos[c + d*x])^(2/3)*Hypergeometric2F1[1/3, 1
/2, 4/3, Cos[c + d*x]^2]*Sin[c + d*x])/(8*b^2*d*Sqrt[Sin[c + d*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0814465, antiderivative size = 90, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 31, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.097, Rules used = {16, 3012, 2643} \[ \frac{3 A \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}-\frac{3 (A+4 C) \sin (c+d x) (b \cos (c+d x))^{2/3} \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};\cos ^2(c+d x)\right )}{8 b^2 d \sqrt{\sin ^2(c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x])/(b*Cos[c + d*x])^(4/3),x]

[Out]

(3*A*Sin[c + d*x])/(4*d*(b*Cos[c + d*x])^(4/3)) - (3*(A + 4*C)*(b*Cos[c + d*x])^(2/3)*Hypergeometric2F1[1/3, 1
/2, 4/3, Cos[c + d*x]^2]*Sin[c + d*x])/(8*b^2*d*Sqrt[Sin[c + d*x]^2])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3012

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*Cos[e
+ f*x]*(b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rule 2643

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1)*Hypergeomet
ric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2])/(b*d*(n + 1)*Sqrt[Cos[c + d*x]^2]), x] /; FreeQ[{b, c, d, n
}, x] &&  !IntegerQ[2*n]

Rubi steps

\begin{align*} \int \frac{\left (A+C \cos ^2(c+d x)\right ) \sec (c+d x)}{(b \cos (c+d x))^{4/3}} \, dx &=b \int \frac{A+C \cos ^2(c+d x)}{(b \cos (c+d x))^{7/3}} \, dx\\ &=\frac{3 A \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}+\frac{(A+4 C) \int \frac{1}{\sqrt [3]{b \cos (c+d x)}} \, dx}{4 b}\\ &=\frac{3 A \sin (c+d x)}{4 d (b \cos (c+d x))^{4/3}}-\frac{3 (A+4 C) (b \cos (c+d x))^{2/3} \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};\cos ^2(c+d x)\right ) \sin (c+d x)}{8 b^2 d \sqrt{\sin ^2(c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.653806, size = 104, normalized size = 1.16 \[ \frac{6 A \tan (c+d x) \sqrt [3]{\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )}-(A+4 C) \sin \left (2 d x-2 \tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{3}{2};\cos ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{8 b d \sqrt [3]{b \cos (c+d x)} \sqrt [3]{\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x])/(b*Cos[c + d*x])^(4/3),x]

[Out]

(-((A + 4*C)*Hypergeometric2F1[1/2, 2/3, 3/2, Cos[d*x - ArcTan[Cot[c]]]^2]*Sin[2*d*x - 2*ArcTan[Cot[c]]]) + 6*
A*(Sin[d*x - ArcTan[Cot[c]]]^2)^(1/3)*Tan[c + d*x])/(8*b*d*(b*Cos[c + d*x])^(1/3)*(Sin[d*x - ArcTan[Cot[c]]]^2
)^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.331, size = 0, normalized size = 0. \begin{align*} \int{ \left ( A+C \left ( \cos \left ( dx+c \right ) \right ) ^{2} \right ) \sec \left ( dx+c \right ) \left ( b\cos \left ( dx+c \right ) \right ) ^{-{\frac{4}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)/(b*cos(d*x+c))^(4/3),x)

[Out]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)/(b*cos(d*x+c))^(4/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac{4}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(b*cos(d*x+c))^(4/3),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)/(b*cos(d*x + c))^(4/3), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac{2}{3}} \sec \left (d x + c\right )}{b^{2} \cos \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(b*cos(d*x+c))^(4/3),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + A)*(b*cos(d*x + c))^(2/3)*sec(d*x + c)/(b^2*cos(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)/(b*cos(d*x+c))**(4/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )}{\left (b \cos \left (d x + c\right )\right )^{\frac{4}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)/(b*cos(d*x+c))^(4/3),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)/(b*cos(d*x + c))^(4/3), x)